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This article puts forward the quadrature method of moments (QMoM) for modeling droplet composition
during the spray vaporization process. This method is implemented for solving the Continuous Thermody-
namic Model (CTM) of multi-component droplet vaporization, an advantageous alternative to the classical
Discrete Component Model (DCM) when the droplet is formed of a great number of components. The CTM
approach consists in modeling the droplet’s composition using a probability density function (PDF). This
method was first tried out for vaporizing droplets by Hallett, who assumed a Gamma-function for the
PDF. However, Harstadt et al. underlined some problems in the case of vapor condensation on the droplet
surface, since the Gamma-PDF model presumes the PDF’s mathematical form. The QMoM which does not
require this hypothesis is studied in this article, according to Lage’s research dealing with QMoM appli-
cation to phase equilibria. The numerical features of QMoM are investigated in detail, and then the
method is implemented for the difficult test case of vapor condensation. The results are analyzed to illus-
trate the application of QMoM to multi-component droplet vaporization modeling and to provide a better
understanding of the QMoM main advantages and limitations.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Droplet vaporization is a phenomenon that has been studied for
years, both from experimental and theoretical points of view. An
extensive review of studies dealing with this subject is given by
Sirignano in his reference book (Sirignano, 1999) and covers phe-
nomena from the behavior of a single droplet to the interactions
between droplets in a spray. The modeling of droplet physics is
actually becoming a real issue in light of the emergence of many
applications requiring droplet spray technologies. From propulsion
applications in the aerospace or automotive industries to the nu-
clear and pharmaceutical industries, droplet spray control is a chal-
lenge faced by numerous strategic technologies. The optimization
of designs entails the substantial development of physical model-
ing. In particular in the field of engine technologies, continuous
performance improvements require the phenomenon of multi-
component droplet vaporization to be considered, since pollutant
emissions and new fuel efficiency depend directly on droplet
composition.

The modeling of multi-component droplet vaporization was
first studied with the aim of rigorously describing the concentra-
tion evolution of each droplet component: this is the Discrete
Component Model (DCM) (Sirignano, 1999). However, the imple-
mentation of such a model in CFD codes is not ideal, due to its
excessive computational cost, induced both by the use of a
ll rights reserved.

+33 562252583.
).
multi-component model for the vaporization process and by the
implementation of a transport equation for each vapor component
in the gas phase. The Continuous Thermodynamic Model (CTM), first
developed in the chemical field by Cotterman et al. (1985), is a
worthwhile approach in which droplet composition is modeled
by a probability density function (PDF). In their first study, the
authors assumed the PDF’s mathematical form to solve the
vapor–liquid equilibrium using a C function. This method was then
extended to multi-component droplet vaporization by Hallett
(2000) and was also implemented by Harstadt et al. who pointed
out the weakness of the method in the case of vapor condensation
(Harstadt et al., 2003). In this case, the assumption about the PDF
shape is actually no longer verified and the implementation of
the C-CTM approach in CFD codes is therefore not straightforward.
Indeed, even though this phenomenon is not preponderant for
combustion applications, it can occur due to local inhomogeneities
and lead to computation failure. New methods in which the PDF is
not presumed were then investigated, such as Orthogonal Colloca-
tion (OC) which was developed recently by Arias-Zugasti and
Rosner (2003). The quadrature method of moments (QMoM) is
based on the same motivation and draws its interest from some
outstanding properties provided by its mathematical background.
The QMoM has already been applied successfully for modeling
multi-component phenomena, such as phase equilibria (Lage,
2007), and in other application fields too, such as aerosol dynamics
(McGraw, 1997), population balance equations (Marchisio and Fox,
2005) and particle-laden flows (Desjardins et al., 2008). A prelimin-
ary study has shown that QMoM is also relevant for modeling
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multi-component droplet vaporization (Laurent et al., 2009), and
consequently numerical properties of QMoM are investigated in
detail in this article in order to demonstrate its advantages for its
implementation in CFD codes.

In the first part of this article, the method is presented in detail,
both the technical approach (i.e. the model and the algorithm) and
the mathematical concepts which are at the root of the method.
The originality of the paper comes from the analysis of the so-
called mathematical Moment Problem which corresponds to the
application of the QMoM to the droplet vaporization phenomenon.
In particular, the theoretical foundations of Moment Problems
enable some relevant properties for QMoM robustness to be put
forward. Then, in the second part of the article, the QMoM is tested
when vapor condenses at the droplet surface. The results are ana-
lyzed to study the convergence and the efficiency of the QMoM and
subsequently to point out the model’s qualities and defects.
2. Application of QMoM for modeling multi-component droplet
vaporization

In this first part, the application of QMoM to the multi-compo-
nent droplet vaporization phenomenon is explained and some key
points are highlighted to put forward the method’s relevant
properties.
2.1. Continuous modeling of the droplet composition

In the studied models, the droplet is assumed to have a uniform
composition which gradually shifts during the vaporization pro-
cess, due to the volatility difference between components. In the
Discrete Component Model (DCM), the mole fraction xi

l of each com-
ponent i is computed. The Continuous Thermodynamic model allows
to reduce the computational cost by modeling the droplet’s com-
position with a probability density function (PDF). This PDF fl is de-
fined by xi

l ¼ flðIÞDI. The distribution parameter is selected in order
to best characterize a component considering its physical behavior
for vaporization process. The normal boiling point Tnb is a relevant
feature for vaporization phenomenon since, contrary to the molar
mass which is commonly used (Hallett, 2000; Harstadt et al.,
2003), it is a direct parameter for the heat of vaporization and
the saturation vapor pressure relationships (see Eqs. (5) and
(23)). This parameter is then chosen for the Continuous Thermody-
namic Model (CTM) and the QMoM implementation.

The representation of the droplet composition in the QMoM ap-
proach can be interpreted as a Discrete Component Model with N
pseudo-components (denoted by the subscript k) instead of N real
components (denoted by the subscript i). Indeed, the PDF is the
sum of Nd functions, determined by the mole fraction x̂k

l and the
normal boiling point bIk

l of the N pseudo-components. These quan-
tities are then based on N so-called environments, where an envi-
ronment corresponds to a single d-peak. Therefore, the QMoM
approach presumes a multi-environment PDF:

fl;NðIÞ ¼
XN

k¼1

x̂k
l dÎk

l
ðIÞ ð1Þ

The number of pseudo-components is very small compared
with the number of real components ðN �NÞ and the normal
boiling point Tnb of each pseudo-component is changing during
the vaporization process in order to best fit the real droplet compo-
sition PDF. This explains the name of ‘‘pseudo-component” used to
clarify QMoM description (Lage, 2007). Another way for mathe-
matically modeling the droplet’s composition is given by the PDF’s
moments. The a order moment of the droplet’s composition is de-
fined from the PDF by
ma
l ¼

Z þ1

0
flðIÞIadI ð2Þ

In the QMoM approach, the integration is simply reduced to a
discrete sum:

ma
l ¼

XN

k¼1

x̂k
l Îk

l

� �a
ð3Þ

The set of equations satisfied by these moments is obtained
from the PDF moment equations modeling droplet vaporization
process (see Section 2.3). The derivation of this equation requires
a specific modeling of physical properties in the framework of Con-
tinuous Thermodynamics. This is detailed in the next section.
2.2. Physical properties for the continuous thermodynamic modeling

In the Continuous Thermodynamic approach, the physical prop-
erties have to be interpolated as functions of I ¼ Tnb. This is the first
hypothesis, denoted Hypothesis 1 in this paper, assumed by CTM
models. In the case of complex mixtures, the components are clas-
sified into homogeneous groups such as paraffins, iso-paraffins,
alcohols or mono-aromatics in order to ensure a satisfying model-
ing of physical properties in the framework of Continuous Thermo-
dynamics. This first assumption implies to reach a compromise
between a reliable description of the droplet’s composition and
the multiplicity of groups. The choice of the distribution parameter
affects also this compromise, and the normal boiling point I ¼ Tnb

is then a relevant option since, in this case, only one component
group can be suitable for modeling fuels such as kerosene.

The physical properties of pseudo-components are therefore
relative to their boiling point. The coefficients of laws correspond-
ing to various physical properties are interpolated as function of
the distribution parameter I (see Appendix A). The procedure is ex-
plained for the normal latent heat of vaporization lvb which is used
to compute the saturation vapor pressure Psat (see Eq. (23)) and the
latent heat of vaporization lv (see Eq. (4)). For real components, the
expression of lv commonly used in literature is (Reid et al., 1977)

liv ¼ li
vb

Ti
c � Ts

Ti
c � Ti

nb

 !0:38

ð4Þ

In this formula, lvb and Tc (the critical temperature) are interpo-
lated as functions of I to obtain the relationship for lv in the frame-
work of Continuous Thermodynamics:

lvðIÞ ¼ lvbðIÞ
TcðIÞ � Ts

TcðIÞ � I

� �0:38

ð5Þ

The interpolation law for lvb has been established from a study
on real components considering lvb variations versus Tnb. A quasi-
linear evolution is obtained (see Fig. 1) and then, lvb is computed
using

lvbðIÞ ¼ A0 þ A1I ð6Þ

Concerning the other physical properties, the coefficients of the
corresponding laws have been mainly linearly interpolated, except
for the liquid molar volume density and the liquid viscosity rela-
tionships which use second order polynomials (see Appendix A).

Concerning the modeling of heterogeneous compositions, sev-
eral groups of components can be used to improve the accuracy
of the Continuous Thermodynamic approach. In the following
sections, the models are only detailed for one component group,
since the multi-PDF model is merely an extension which uses
classical Discrete Component Model applied to groups instead of
components.
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Fig. 1. Normal latent heat of vaporization lvb for each component of the kerosene.
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2.3. PDF moment equations for modeling droplet composition
evolution

When the composition is assumed to be uniform in the droplet,
the mass conservation equation for each component i is

dxi
l

dt
¼ 3

4pR3cl

_ntotxi
l � _ni

� �
ð7Þ

This equation gives the evolution of the mole fraction xi
l of the

real component i in the droplet whose radius is R. This relationship
is written using the molar system since it is more convenient for
Continuous Thermodynamic methods (mole fractions are commonly
used for physical properties of mixtures). Then, cl represents the
molar volume density of the droplet, _ni the molar vapor flow rate
of the component i and _ntot the total vapor flow rate.

Classical droplet vaporization models assume quasi-steadiness
and spherical symmetry for the surrounding gas phase (r is the ra-
dial coordinate). The vapor flow rate _ni of each real component i is
modeled by the sum of a convection and a diffusion term. The dif-
fusion term is modeled using a simplified Fick’s law with a diagonal
diffusion matrix whose values are the diffusion coefficients Di

g:

_ni ¼ _ntotxi
g � 4pr2cgDi

g

dxi
g

dr
ð8Þ

Then, the Sherwood number Shi
g , defined by

Shi
g ¼

2R
xi

g;1 � xi
g;S

dxi
g

dr

 !
s

ð9Þ

is introduced and Eq. (8) is applied at the droplet surface (i.e. r ¼ R).
This gives the vapor flow rate _ni according to the mole fractions xi

g;s

and xi
g;1 which correspond respectively to the mole fractions of the

component i at the droplet surface and at the droplet boundary
layer limit (infinity if the droplet is unmoving):

_ni ¼ _ntotxi
g;s � 2pRcgDi

gShi
g xi

g;1 � xi
g;s

� �
ð10Þ

Therefore, Eq. (7) modeling droplet composition evolution
becomes:

dxi
l

dt
¼ 3

4pR3cl

_ntotxi
l � _ntotxi

g;s þ 2pRcgDi
gShi

g xi
g;1 � xi

g;s

� �� �
ð11Þ

In order to convert this equation in the Continuous Thermody-
namic framework, the diffusion coefficients Di

g and the Sherwood
numbers Shi

g are assumed to be the same for all components. In-
deed, this hypothesis (called Hypothesis 2 in the paper) is com-
monly done by Continuous Thermodynamic Models to perform the
integration of the continuous form of Eq. (11) and then, to obtain
PDF moment equations. This assumption may seem quite strong
since it supposes the same diffusion behavior for all vapor compo-
nents. The practical experience shows some consequences in cer-
tain cases when the vapor composition is rather different from
the droplet composition. However, even for these unfavourable
cases, the results remain quite satisfactory (see Section 3).

The Spalding number BM is commonly introduced in droplet
vaporization models. Its definition is

BM ¼
xtot

g;s � xtot
g;1

1� xtot
g;s

ð12Þ

The total vapor mole fraction xtot
g;1 is known and xtot

g;s is obtained
from the phase equilibrium at the droplet interface. This point is
detailed below in Section 2.5. Then, the sum of Eq. (10) for all com-
ponents i using Hypothesis 2 assumption and BM definition yields

_ntot ¼ 2pRcgDgShgBM ð13Þ

This equation is used in Eq. (11) to replace ShgDg and, for _ntot – 0
(i.e., BM – 0), this gives:

dxi
l

dt
¼ 3 _ntot

4pR3cl

xi
l �

xi
g;s 1þ BMð Þ � xi

g;1

BM

 !
ð14Þ

and, for _ntot ¼ 0,

dxi
l

dt
¼ 3cgDgShg

2R2cl

xi
g;1 � xi

g;s

� �
ð15Þ

This modeling is then transposed into the CTM framework and
the integration of the continuous form of Eqs. (14) and (15) gives
the moment evolution equations. In the case of _ntot–0 (i.e.,
BM – 0), the PDF moment equations are:

dma
l

dt
¼ 3 _ntot

4pR3cl

ma
l �

ma
g;s 1þ BMð Þ �ma

g;1

BM

� �
ð16Þ

and, in the case of _ntot ¼ 0, this is

dma
l

dt
¼ 3cgDgShg

2R2cl

ma
g;1 �ma

g;s

� �
ð17Þ

These equations constitute the Moment Problem which has to be
solved numerically. All parameters defined in the right-hand side
of these equations are known, except the total vapor flow rate
_ntot (see the detail of calculation in the next section) and the PDF
moments at the droplet surface ma

g;s (see Section 2.5).

2.4. Vapor flow rate calculation

The total vapor flow rate _ntot is calculated following the classical
modeling of the droplet vaporization phenomenon (Sirignano,
1999). The integration of Eq. (8) on the boundary layer of the drop-
let, between the droplet radius R and the limit of the boundary
layer Rf , gives

xtot
g;s ¼ 1þ xtot

g;1 � 1
� �

exp �
_ntot

4pcgDg

1
R
� 1

Rf

� �� �
ð18Þ

Using BM definition (see Eq. (12)), this leads to the well-known
equation (Sirignano, 1999):

_ntot ¼ 2pRcgDgSh�glnð1þ BMÞ ð19Þ

where Sh�g is the modified Sherwood number defined by:

Sh�g ¼
2Rf

Rf � R
ð20Þ
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For an unmoving droplet, Sh�g ¼ 2 since Rf !1 and in general,
Sh�g is given by correlations depending on the Reynolds number,
the Schmidt number and the Spalding number (Sirignano, 1999).

2.5. Vapor–liquid equilibrium at the droplet surface

The vapor–liquid equilibrium at the droplet interface enables to
compute the moments of the vapor composition at the droplet sur-
face fma

g;sg
2N�1
0 from the moments of the droplet composition

fma
l g

2N�1
0 . For ideal mixtures, the phase equilibrium at the droplet

interface finds expression in the well-known Raoult’s law,

xi
g;sP1 ¼ xi

lP
i
satðTsÞ ð21Þ

where PsatðTsÞ refers to the saturation vapor pressure expressed at
Ts, the temperature at the droplet surface. The continuous form of
Eq. (21) is

fg;sðIÞP1 ¼ flðIÞPsatðI; TsÞ ð22Þ

and Psat is given, for instance, by the Clausius-Clapeyron equation:

PsatðI; TsÞ ¼ P1exp
lvbðIÞ
R

1
I
� 1

Ts

� �� �
ð23Þ

The integration of Eq. (22) gives the expression which joins the
moments fma

g;sg
2N�1
0 to the moments fma

l g
2N�1
0 . The non-polynomial

function I ! PsatðIÞ (see Eq. (23)) reveals that the integration of the
vapor–liquid equilibrium equation can be a difficult point depending
on the PDF expression. For the C-CTM approach, this was solved by
Cotterman et al. (1985) and then resumed by Hallett for vaporizing
droplet modeling (Hallett, 2000). Concerning the method proposed
in this paper, the difficulty is taken back to find the mole fraction
x̂k

l and the normal boiling point bIk
l of each pseudo-component k. In-

deed, the integration of the continuous form of the Raoult’s law
(see Eq. (22)) using the QMoM PDF fl;N (see Eq. (1)) gives:

ma
g;s ¼

XN

k¼1

x̂k
l

Psat
bIk

l ; Ts

� �
P1

bIk
l

� �a
ð24Þ

The key point is now the computation of the fbIk
l g

N
1 and the fx̂k

l g
N
1

from the set of moments fma
l g

2N�1
0 numerically computed from Eq.

(16). This problem is commonly called a Moment Problem in
mathematics.

2.6. The Moment Problem

The Moment Problem studied in this paper consists in searching
the N nodes fbIk

l g
N
1 and the N weights fx̂k

l g
N
1 of a Gauss quadrature

whose formulation for this application isZ
FðIÞfl;NðIÞdI ¼

XN

k¼1

x̂k
l F

bIk
l

� �
þRðFÞ ð25Þ

RðP2N�1Þ ¼ 0 ð26Þ

Indeed, when FðIÞ ¼ Ia in this expression, the Gauss quadrature
gives an exact solution for the moments up to the 2N � 1 order.
This quadrature rule is optimal since N nodes are necessary and
sufficient to obtain the 2N first moments.

2.7. Proof of the existence of a solution to the studied Moment Problem

At each time step, moments are computed by discretizing Eq.
(16). The numerical expression at t þ Dt is then

ma
l ðt þ DtÞ ¼ 1þ 3 _ntot

4pR3cl

Dt
� �

ma
l ðtÞ �

3Dt

4pR3cl

�
_ntotð1þ BMÞ

BM
ma

g;sðtÞ þ
3Dt

4pR3cl

_ntot

BM
ma

g;1ðtÞ ð27Þ
The PDF fl;N associated to the moments fma
l g

2N�1
0 is supposed to

exist at time t. Then, after using Eq. (22), Eq. (27) is equivalent to

ma
l ðt þ DtÞ ¼

Z
IaðAfl;N þ Bfg;1;NsÞdI ð28Þ

with

AðI; tÞ ¼ 1þ 3 _ntotðtÞ
4pðRðtÞÞ3clðtÞ

Dt

 !
� 3Dt

4pðRðtÞÞ3clðtÞ

�
_ntotðtÞð1þ BMðtÞÞ

BMðtÞ
PsatðI; tÞ

P1
ð29Þ

and

BðtÞ ¼ 3Dt

4pðRðtÞÞ3clðtÞ
_ntotðtÞ
BMðtÞ

ð30Þ

The issue discussed in this section is to know which constraint
should be satisfied by the time step to ensure the existence at time
t þ Dt of a N-point PDF having exactly the 2N first moments
fma

l ðt þ DtÞg2N�1
0 . According Shohat and Curto who studied mathe-

matically Moment Problems, the positivity of Hankel matrices HN�1

and H�N�1 obtained from moments fma
l g

2N�1
0 is a necessary and

sufficient condition for the existence of a N-point PDF on �0;þ1½
(Shohat and Tamarkin, 1943; Curto and Fialkow, 1991). These
Hankel matrices are defined by:

HN�1 ¼

m0
l m1

l � � � mN�1
l

m1
l m2

l � � � mN
l

..

. ..
. . .

. ..
.

mN�1
l mN

l � � � m2N�2
l

0BBBBBB@

1CCCCCCA ð31Þ

and

H�N�1 ¼

m1
l m2

l � � � mN
l

m2
l m3

l � � � mNþ1
l

..

. ..
. . .

. ..
.

mN
l mNþ1

l � � � m2N�1
l

0BBBBBB@

1CCCCCCA ð32Þ

Then, in order to prove the positivity of Hankel matrices at time
t þ Dt, the function I! AðI; tÞf j

l ðI; tÞ þ BðtÞf j
g;1ðI; tÞ is studied. The

function B is always positive, and a lower bound is obtained for
I! AðI; tÞ:

AðI; tÞP 1þ 3 _ntot

4pR3cl

Dt
� �

� 3Dt

4pR3cl

_ntotð1þ BMÞ
BM

maxk
PsatðbIk

l Þ
P1

 !
ð33Þ

Indeed, the following inequality Eq. (34) has been introduced in
Eq. (29) for the saturation vapor pressure term:

mink
PsatðbIk

l Þ
P1

 !
6

PsatðIÞ
P1

6 maxk
PsatðbIk

l Þ
P1

 !
ð34Þ

Finally, different cases have been distinguished according to the
sign of each term of Eq. (33), and a sufficient condition on Dt has
been found to ensure the positivity of the lower bound of A. After
some calculations, this leads to

Dt <

4
3pR3cl

_ntot

��� ���
�1þ ð1þBMÞ

BM
maxk

Psat ð̂Ik
l
Þ

P1

� ����� ���� ð35Þ
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In the case of _ntot ¼ 0, this inequality must be replaced by

Dt <
4
3 pR3cl

2pRcgDgShgmaxk
Psat ð̂Ik

l
Þ

P1

� ����� ���� ð36Þ

This criterion can be easily compared to the characteristic
vaporization time of a mono-component droplet, since the lifetime
given by the D2-law in this case is

s ¼ 3
2

4
3 pclR

3

_ntot

�����
����� ð37Þ

Consequently, there exists Dt such that the function
I ! AðI; tÞf j

l ðI; tÞ þ BðtÞf j
g;1ðI; tÞ is positive. This entails the positivity

of Hankel matrices at t þ Dt and subsequently, according to the Mo-
ment Problem theory, this proves the existence of a N-point PDF at
t þ Dt having exactly the 2N first moments fma

l ðt þ DtÞg2N�1
0 .

The existence of a solution to the studied Moment Problem is
thus theoretically proved under an explicit condition about the
time step. This result is one of the main points of interest of QMoM
since it demonstrates its robustness and therefore its potential for
implementation in CFD codes.

2.8. QMoM algorithm for computing nodes and weights

The mathematical background of the method is used to built the
QMoM algorithm which finds the nodes fbIk

l g
N
1 and the weights

fx̂k
l g

N
1 of the Gauss quadrature (see Eq. (25)). According to the fun-

damental theorem of Gauss quadrature (Gautschi, 2004; Press and
Teukolsky, 1990), the nodes are the roots of the monic orthogonal
polynomial pN relative to the inner product defined by

hp; qi ¼
Z þ1

0
pðIÞqðIÞfl;NðIÞdI ð38Þ

Then, as any orthogonal polynomial sequence, the fpkgN
�1 fol-

lows a recurrence formula which is

pkþ1 ¼ ðI � akÞpk � bkpk�1 ðaÞ
p�1 ¼ 0 ðbÞ
p0 ¼ 1 ðcÞ

8><>: ð39Þ

This recurrence formula is equivalent to

I~p ¼

a0 1
b1 a1 1

. .
. . .

. . .
.

bN�1 aN�1

0BBBB@
1CCCCA~pþ

0
..
.

0
pNðIÞ

0BBBB@
1CCCCA ð40Þ

with

~p ¼

p0ðIÞ
p1ðIÞ
..
.

pN�1ðIÞ

0BBBB@
1CCCCA ð41Þ

The tridiagonal matrix in the right-hand side of Eq. (40) is sim-
ilar to a Jacobi matrix (Gautschi, 2004; Press and Teukolsky, 1990):

JN ¼

a0

ffiffiffiffiffi
b1

pffiffiffiffiffi
b1

p
a1

ffiffiffiffiffi
b2

p
. .

. . .
. . .

.ffiffiffiffiffiffiffiffiffiffi
bN�1

p
aN�1

0BBBBB@

1CCCCCA ð42Þ

Then, as the nodes fbIk
l g

N
1 are the roots of pN , they are also the

eigenvalues of JN (see Eq. (40)). Conventional numerical methods
can be used to obtain eigenvalues from the matrix coefficients ak
and bk (Press and Teukolsky, 1990). The key point of the QMoM
algorithm is to compute the coefficients fakgN�1

0 and fbkgN�1
1 from

the moments fma
l g

2N�1
0 with an efficient method. The Product-Dif-

ference algorithm developed by Gordon is an effective way used
here to perform this computation (Gordon, 1968; McGraw, 1997).

The nodes are therefore obtained from the eigenvalues of the Ja-
cobi matrix. Concerning the weights, they can be also computed
from the Jacobi matrix eigenvectors. Indeed, if uk;1 is the first com-
ponent of the kth normalized eigenvector of JN , the expression used
in literature for calculating the kth weight is (Gautschi, 2004; Press
and Teukolsky, 1990)

x̂k
l ¼ ml;0u2

k;1 ð43Þ
3. Results analysis

3.1. Test case description

The example studied in this part considers kerosene droplets
vaporizing in air rich in vapor. The vapor is composed with the
most volatile component of the kerosene. This test case has been
chosen since it is relevant for the investigation of QMoM applica-
tion to the multi-component droplet vaporization modeling. In-
deed, the vapor condensation phenomenon was not properly
solved by the Gamma-PDF model since, in this case, the droplet
composition PDF does not fit with a C function (Harstadt et al.,
2003). It is then appealing to test QMoM for a condensation test
case. This example is also fulfilling to study other significant points
of interest, such as the Continuous Thermodynamic hypotheses and
the QMoM convergence. The reference model used to perform this
study is the Discrete Component Model (DCM) which solves droplet
composition equations for each component of the mixture.

The test case presented in this paper studies the evaporation of
kerosene droplets vaporizing in air mixed with vapor of iso-C6H14,
the most volatile component of kerosene (Tiso�C6H14

nb ¼ 331 K). The
droplets are 50 lm diameter and their initial temperature is
300 K. The surrounding gas temperature and the ambient pressure
are supposed to remain constant. They are fixed respectively to
500K and 5bar. The initial composition of the carrier gas is
xair

g;1 ¼ 0:7 and xiso�C6H14
g;1 ¼ 0:3. The vapor composition evolution is

computed from a two-way coupling approach applied to the mass
conservation equation of each component. The droplet’s concen-
tration is equal to 1011 dropletsm�3. Kerosene droplets are studied
and their initial composition is plotted according to the different
model. For the Discrete Component Model (DCM), the mole fractions
of each component of the kerosene are plotted in Fig. 2. Then, the
PDF corresponding to the C-Continuous Thermodynamic Model
(C-CTM) is displayed in Fig. 3 and finally, the nodes and the
weights of the quadrature method of moments (QMoM) are repre-
sented in Fig. 4. The corresponding moments for the kerosene com-
position are given in Table 1.

3.2. Global evolutions

Droplet vaporization has been computed using different meth-
ods for modeling the droplet composition. The Discrete Component
Model (DCM) provides the reference solution which is compared to
the other Continuous Thermodynamic methods, the C-CTM and the
QMoM. The droplet’s vapor flow rate is first analyzed to under-
stand the vaporization phenomenon. Following Fig. 5, vapor first
condenses (i.e., the vapor flow rate is negative) and then, when
the droplet is rich enough in iso-C6H14, it evaporates (i.e., the vapor
flow rate is positive). In comparison to the C-CTM approach, the
QMoM results are closer to the reference model (DCM) and, as
expected, this is improved by increasing the number of
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Table 1
Moments of the kerosene composition.

Moment order (a) Moment for the droplet composition ðma
l Þ

0 1.0000000000 � 100

1 4.4745608709 � 102

2 2.0119347196 � 105

3 9.0927061540 � 107

4 4.1313264695 � 1010

5 1.8875531070 � 1013

6 8.6738050766 � 1015

7 4.0095554609 � 1018
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pseudo-components (i.e., N ¼ 3 instead of N ¼ 2). The inaccuracy
of the C-CTM approach for the vapor flow rate computation is truly
due to a large discrepancy of this model concerning the droplet
composition modeling. This can be noticed from the first order
moment evolution (see Fig. 6). After the vapor condensation, the
droplet composition PDF is not anymore mono-modal and conse-
quently the C-CTM fails whereas the QMoM computes a
satisfactory solution. The analysis of QMoM results is completed
with the study of node and weight evolutions.
3.3. Node and weight evolutions

The QMoM nodes and weights are displayed for the droplet’s
and the vapor’s compositions. The results are provided for QMoM
N ¼ 3 (i.e, with three pseudo-components). The iso-C6H14 conden-
sation is noticeable from the increasing of iso-C6H14 mole fraction
in the droplet’s composition (see weight 1 in Fig. 7) and from its
decreasing in the vapor’s composition (see weight 1 on Fig. 8).
The vaporization phenomenon is then characterized by an accu-
mulation of heavy components in the droplet (see weight 3 in
Fig. 7). The analysis of node variations shows that the nodes
quickly plateau (see Figs. 9 and 10). Once the nodes are such asbIk

l ðt þ DtÞ ¼ bIk
l ðtÞ, they remain constant since an obvious solution

of Eq. (27) using QMoM moment expressions Eq. (3) is actuallybIk
l ðt þ DtÞ ¼ bIk

l ðtÞ and
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x̂k
l ðt þ DtÞ ¼ 1þ 3 _ntot

4pR3cl

Dt
� �

x̂k
l ðtÞ �

3Dt

4pR3cl

_ntotð1þ BMÞ
BM

� PsatðbIkÞ
P1

x̂k
l ðtÞ þ

3Dt

4pR3cl

_ntot

BM
x̂k

g;1ðtÞ ð44Þ

Therefore, in this simplified test case which considers only the
vaporization phenomenon, the nodes quickly converge and then,
the weight evolution is the same as in a Discrete Component Model.
3.4. Convergence

The outcomes of the Continuous Thermodynamic hypotheses
have to be studied in order to point out the best solution which
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Fig. 8. Evolution of the QMoM weights for the vapor composition.
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can be obtained using a CTM approach. The CTM methods (Gam-
ma-PDF model, QMoM) tend toward this solution which corre-
sponds to the solution provided by the DCM model using the
CTM hypotheses. The two main Continuous Thermodynamic
hypotheses are the interpolation of the physical properties as func-
tions of I (see Hypothesis 1) and the same diffusion coefficient and
Sherwood number for all components (see Hypothesis 2). This last
hypothesis is equivalent to assume the same Spalding number BM

for all components (see Eq. (13)).
The vapor condensation test case has been computed with the

Discrete Component Model. The two CTM hypotheses have been
successively added to analyze the effects of both of them (see
Fig. 11). The results obtained show that the Hypothesis 2 is the
most significant source of error. Indeed, the vapor is mainly com-
posed with a volatile component, the iso-C6H14, and consequently
the value of the Spalding number is characteristic of a volatile com-
ponent. This explained why the droplet lifetime is underestimated
when Continuous Thermodynamic approaches are used in this case:
there is an early vaporization of ‘‘heavy” components, and conse-
quently a shortening of the droplet vaporization time. The CTM re-
sults remain quite satisfying for all that, since the mass of the
droplet at the end of the vaporization is almost insignificant to
alter CFD computations. The optimal CTM solution has been thus
analyzed and serves as the reference solution to study QMoM
convergence.

The number of pseudo-components used in the QMoM ap-
proach has been increased up to N ¼ 4 in order to study the QMoM
convergence. The results are displayed in Fig. 12. They point out
the improvement of the accuracy with the number of pseudo-com-
ponents since the composition is then better modeled, and they
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show that the convergence is reached for three pseudo-compo-
nents. Indeed, the QMoM results for N ¼ 3 are very close to the
optimal CTM solution (i.e., DCM solution with CTM hypotheses)
and it is worth noticing that there is no real improvement for
N ¼ 4 (i.e., with four pseudo-components). This observation made
in this case has been actually experienced and confirmed for vari-
ous examples. The QMoM appears therefore to be quite suitable to
solve the CTM approach of the multi-component droplet vaporiza-
tion modeling since only three pseudo-components are required to
obtain the convergence. Consequently, the accuracy can be com-
bined with efficient computations.
3.5. Computational efficiency

The various methods have been tested to analyze their compu-
tational cost (see Table 2). The QMoM approach appears slightly
more time-consuming than the C-CTM model, due to the algorithm
used in QMoM for finding the Jacobi matrix eigenvalues. However,
the Moment Problem can be analytically solved using two pseudo-
components ðN ¼ 2Þ. The QMoM has then the same computation
time as the C-CTM and this can be an advantageous solution for
computations with strong time constraints.
4. Concluding remarks

In this article, the quadrature method of moments (QMoM) has
been applied for solving the Continuous Thermodynamic Model of
multi-component droplet vaporization. According Lage who has
implemented this method for vapor–liquid equilibrium (Lage,
2007), this article extends the QMoM scope to the modeling of
the droplet vaporization phenomenon. The aim of this research
work is actually to provide a numerical method which allows to
implement a multi-component vaporization model in CFD codes.
The accuracy, the robustness and the low computational cost are
therefore three significant requirements which have been analyzed
in this study.
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Table 2
Computation times of the different models.

Model CPU time

DCM (36 components) 100
T-CTM 4
QMoM N = 2 (analytic solution) 4
QMoM N = 2 (numerical solution) 6
QMoM N = 3 (numerical solution) 7.5
Consequently, a particular importance has been attached to the
understanding of the QMoM mathematical background. Indeed,
the results coming from the Moment Problem theory have permit-
ted to demonstrate the QMoM robustness. The existence of a solu-
tion to the QMoM modeling has been proved under an explicit
condition about the time step. This point is relevant for the imple-
mentation of such a method in industrial CFD codes, since robust-
ness is critical for complex applications.

Then, the QMoM has been tested in the difficult case of the
vapor condensation. The results have pointed out a clear
improvement using the QMoM rather than the Gamma-PDF
model. More over, the convergence study has shown that the
optimal CTM solution is reached with only three pseudo-compo-
nents ðN ¼ 3Þ. The QMoM computation is a little bit more time-
consuming for N P 3 than the Gamma-PDF model. However, the
same computation time can be obtained using two pseudo-com-
ponents (i.e., using the analytic solution). In this case, the results
remain quite satisfactory, even if the convergence is not
reached.

Consequently, the various properties of the QMoM which have
been demonstrated in this article, give convincing arguments for
the implementation of this method in CFD codes. The QMoM is
then promising for computing multi-component droplet vaporiza-
tion in case of industrial applications.
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Appendix A. Physical properties in Continuous Thermodynamics

The physical properties given in this section are obtained fol-
lowing the procedure detailed in Section 2.2 which describes the
conversion from the physical properties of real components used
in Discrete Component Model (DCM) to the physical properties of
pseudo-components used in Continuous Thermodynamic Models
(CTM). The relationships used for the DCM physical properties to
get then CTM interpolations are taken from Reid’s book (Reid
et al., 1977). The values given afterwards for the various coeffi-
cients are those obtained and implemented for the kerosene com-
position studied in this paper.

Molar mass ðkg kmol�1Þ:

MðIÞ ¼ A0 þ A1I ðA:1Þ

A0 ¼ �123:60 and A1 ¼ 0:6247.

Critical temperature (K):

TcðIÞ ¼ A0 þ A1I ðA:2Þ

A0 ¼ 205:95 and A1 ¼ 0:9046.

Latent heat of vaporization ðJ kmol�1Þ:

lvðIÞ ¼ ðA0 þ A1IÞ TcðIÞ � TS

TcðIÞ � I

� �0:38

ðA:3Þ
A0 ¼ �3:7607:106 and A1 ¼ 9:4865:104.
Saturation vapor pressure (Pa):
Clausius-Clapeyron expression:

PsatðIÞ ¼ P0exp
ðA0 þ A1IÞ

R

1
I
� 1

TS

� �
 �
ðA:4Þ
A0 ¼ �3:7607:106 and A1 ¼ 9:4865:104.
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Vapor heat capacity ðJ kmol�1 K�1Þ:

CpgðIÞ ¼ ðA0 þ A1IÞ þ ðB0 þ B1IÞTg þ ðC0 þ C1IÞT2
g ðA:5Þ

A0 ¼ 1:7478:104;A1 ¼ �1:0038:101; B0 ¼ �8:0648:102;B1 ¼ 3:8658;
C0 ¼ 3:5307:10�1; C1 ¼ �1:5673:10�3.

Vapor viscosity ðkg m�1 s�1Þ:

lgðIÞ ¼ ðA0 þ A1IÞ þ ðB0 þ B1IÞTg ðA:6Þ

A0 ¼ 3:2941:10�6;A1 ¼�4:5702:10�9;B0 ¼ 2:4177:10�8;B1 ¼ �1:9742:10�11.

Vapor thermal conductivity ðJ m�1 K�1 s�1Þ:

kgðIÞ ¼ ðA0 þ A1IÞ þ ðB0 þ B1IÞTg þ ðC0 þ C1IÞT2
g ðA:7Þ

A0 ¼ �6:8725:10�3;A1 ¼ 9:8134:10�6;B0 ¼ 3:5028:10�5;

B1 ¼ �6:4010:10�8;C0 ¼ 2:263:10�7; C1 ¼ �2:5570:10�10.

Vapor diffusion coefficient ðm2 s�1Þ:
The following relationship for Dg is function of the ambient

pressure P expressed in atm, the ambient temperature Tg in K,
the molar mass expressed in g:mol�1 and the molecular diffusion
volume m.

DgðIÞ ¼
10�7T1:75

g
MðIÞþMair

MðIÞMair ðIÞ

h i1
2

P ðmg;0 þ mg;1IÞ
1
3 þ mair

g

1
3

h i2 ðA:8Þ

mg;0 ¼ �1:7926:102; mg;1 ¼ 9:113:10�1.

Liquid molar volume density ðkmol m�3Þ:

clðIÞ ¼ A0 þ A1I þ A2I2
� �

þ B0 þ B1I þ B2I2
� �

Tl ðA:9Þ

A0 ¼ 4:2163:101;A1 ¼ �1:3445:10�1;A2 ¼ 1:2442:10�4;

B0 ¼ �7:1106:10�2;B1 ¼ 2:5921:10�4; B2 ¼ �2:5284:10�7.

Liquid heat capacity ðJ kmol�1 K�1Þ:

CplðIÞ ¼ ðA0 þ A1IÞ þ ðB0 þ B1IÞTl ðA:10Þ

A0 ¼ �2:2873:105;A1 ¼ 8:2549:102; B0 ¼ �7:8088:101;B1 ¼ 1:6086.
Liquid viscosity ðkg m�1 s�1Þ:

logðllðIÞÞ¼ A0þA1IþA2I2
� � 1

Tl
� 1

B0þB1IþB2I2
� �

0@ 1A�3 ðA:11Þ
A0 ¼ �5:8043:102;A1 ¼ 4:1835;A2 ¼ �3:568:10�3;

B0 ¼ �1:7951:102;B1 ¼ 1:6782;B2 ¼ �1:4098:10�3.

Liquid thermal conductivity ðJ m�1 K�1 s�1Þ:

klðIÞ ¼ ðA0 þ A1IÞ þ ðB0 þ B1IÞTl þ ðC0 þ C1IÞT2
l ðA:12Þ

A0 ¼ 5:355:10�2;A1 ¼ 5:0987:10�4;B0 ¼ �2:5251:10�4;

B1 ¼ �7:9625:10�7;C0 ¼ 2:483:10�7;C1 ¼ 3:2996:10�10.
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